Заземление

Защитное заземление

Опасность поражения электрическим током и его воздействие на нетоковедущие контакты

Электротравмы возникают при попадании человека под действие напряжения или при прикосновении к токопроводящему участку, потенциал которого отличается от потенциала земли. Так же опасность поражения током возможна при прикосновении к двум точкам в электроустанвке с различными потенциалами. Статистика говорит, что в производстве на электротравмы приходится 0,5 – 1 % всех случаев, при этом смертельные случаи составляют 20 – 40% от общего числа поражений электрическим током. Чаще всего смертельное поражение происходит в оборудовании с питанием от 127 до 380 Вольт. Опасность поражения электрическим током заключается в том, что организм человека не в состоянии дистанционно определить наличие и силы тока, а его защитная реакция проявляется только уже под воздействием на тело электрического тока, когда речь уже идет о непосредственном поражении. Во время протекания тока он вызывает непроизвольные сокращения мышц, в том числе и органов, жизненно важных для человека, что нарушает их нормальную жизнедеятельность. Дополнительную опасность несут в себе электроустановки повышенного напряжения выше 1000В., где опасность поражения заключается в приближении к токопроводящим шинам и удара током электрической дуги.

Во время протекания тока через организм человека, происходит нагрев тканей, ожоги (термическое воздействие), разложение жидкостей, крови (электролитическое), нарушение обменных процессов в организме, мышечный спазм (биологическое).

При протекании через организм токов 0,6 – 1,5 мА переменной частоты 50 Гц или 5 – 7 мА постоянного тока человек начинает ощущать их воздействие. Когда неотпускающий ток начинает вызывать судорожные сокращения мышц, его значение составляет: 10 – 15 мА для переменного значения и 50 – 80 мА для постоянного. При значении переменного тока в 100мА 50Гц и постоянного тока в 300мА начинается фибрилляция сердца (сбой его ритма работы).

Для электронных устройств попадание электрического тока на нетоковедущие части (к примеру, корпус), либо на питающие или информационные линии с другим потенциалом (короткое замыкание), приводит к гарантированному выходу устройства из строя. Причем в зависимости от величины напряжения и площади замыкания степень выгорания электронных деталей экспотенциальна. Другим, не менее опасным фактором влияния постороннего напряжения на нетоковедущие элементы является статическое электричество. Статический заряд, приходящий на плату с электронными компонентами, даже приложенный к корпусу, способен полностью вывести ее основные элементы из строя. Чаще всего страдает основной управляющий процессор. В современной электронике выход из строя процессора, припаянного к плате BGA монтажом (когда контакты располагаются непосредственно под чипом), ведет к полной замене модуля из-за высокой сложности и технологичности ремонта, либо отсутствия в свободной продаже запасных радиозапчастей. Хорошим примером может служить попадание молнии, либо подключение телевизионного выхода видеокарты к телевизору на «горячую», ведущее к выгоранию видеопроцессора карты из-за разности потенциалов, подключение спутникового конвертера (головки) при вставленном кабеле во включенный спутниковый ресивер, ведущее к выгоранию последнего, ремонт электроники без заземляющего браслета. Так же на практике довольно часто встречается ситуация, когда корпус системного блока начинает бить током. Это происходит из-за конструкции его блока питания. При высыхании одного из 2-х сетевых электролитов происходит изменение потенциала средней точки, которая через развязывающие конденсаторы находится на корпусе компьютера. Примеров может быть огромное множество. Уберечь себя и электронику от нежелательного воздействия посторонних электрических токов помогает заземление.

Защитное заземление

Защитное заземление представляет собой преднамеренное электрическое соединение металлических нетоковедущих частей оборудования, которое может оказаться под напряжением, с землей или ее эквивалентом. Такая мера защиты является наиболее эффективной мерой защиты электронного и электрооборудования, которое может запитываться от промышленной сети до 1000 вольт. Его функциональное назначение заключается в снижении напряжения прикосновения либо в приложенном неконтролируемом потенциале извне. При этом за счет минимально возможного сопротивления заземления, стремящегося в идеале к 0, происходит выравнивание потенциалов оказавшихся под действием напряжения устройства и земли. В результате ток протекает по наименьшему сопротивлению заземления непосредственно в землю, защищая при этом заземляемый объект и человека в том числе. В установках с напряжением питания выше 1000 В. и большими токами, проходящими через заземление, должна быть предусмотрена токовая автоматически разрывающая питающую цепь защита, позволяющая отключить поврежденный участок. В этом случае пробоя питающей фазы на корпус речь идет об однофазном коротком замыкании.

Существуют правила устройства электроустановок (ПУЭ), согласно которым, при напряжении переменного тока 380 В., а так же постоянного тока 400 В. и выше, защитное заземление должно применяться в обязательном исполнении во всех электроустановках. Если оборудование применяется в особо опасных помещениях, то заземлению подлежат электроприборы с необходимым питанием для сети переменного тока от 42 В. и выше, для сети постоянного тока от 110 В. То же правило соответствует применению заземления во взрывоопасных установках.

Защитному заземлению подлежат любые нетоковедущие части, на которые теоретически возможен пробой изоляции, наведение статического напряжения, или попадание токов извне. Кроме того, защитные металлические гофры кабельных силовых трасс во избежание пробоя проводов и попадания напряжения на себя также необходимо заземлять.

Правилами ПУЭ не регламентируется заземление электрических шкафов и электрооборудования, если оно установлено на металлических конструкциях с заземлением, либо имеющих надежный электрический контакт металлических частей с землей. В качестве заземлителя в этом случае может выступать арматура, оттяжки, кронштейны и т.д.

Конструкция заземления и заземляющих устройств

К заземляющим устройствам относят совокупность заземлителей, которыми могут выступать металлические проводники или группы проводников, соединенных между собой и грунтом. В зависимости от расположения заземляющих устройств по отношению к заземляемому оборудованию заземление может быть выносным (сосредоточенным) или контурным (распределенным).

Выносные заземлители

В случае применения выносных заземлителей их располагают сосредоточенно на равном расстоянии от общей заземляющей шины, как и заземляемое оборудование. На рисунке выносного заземления представлено: 1 – заземлители, 2 – заземляющие проводники, 3 –заземляемое оборудование. Заземлители расположены на удаленном расстоянии от оборудования для предотвращения растекания тока на устройства и появления контурных заземляющих токов.

В данной схеме при прикосновении человека к корпусу оборудования, на котором появится напряжение, через его тело пройдет ток значительно меньший по отношению к его величине, которая пройдет через заземляющие шины к заземлителям. Причем, чем меньше сопротивление шины и заземлителей, тем ниже будет величина тока через человека. Учитывая эти факторы, стоит отметить, что выносное заземление обеспечивает достаточную безопасность человека до тех пор, пока напряжение на оборудовании не превысит некоторой пороговой величины. Если на корпусе оборудования появятся токи большой величины (токи короткого замыкания), то часть из них пройдут через тело человека, что чревато электрическим ударом. Для предотвращения этой ситуации применяют контурное заземление.

Заземлители контурного заземления

Данный вид заземления обусловлен размещением заземлителей по всему периметру или внутри площадки, где расположено заземляемое оборудование. Все заземлители между собой соединены электрической связью. В случае замыкания на корпус происходит стекание тока в землю по ближайшему заземлителю, где самая большая разность потенциалов. Если рассматривать напряжение на всей территории площадки, то в отличие от применения выносного заземления его величина будет значительно меньше. Данное напряжение называется шаговым. Если человек одной рукой или другой частью тела прикоснется к устройству, а другой частью тела прикоснется к заземлителю, при этом он будет расположен между заземлителями, то через его тело протечет, в случае замыкания, значительный ток. В то же время напряжение над заземлителем (под ногами человека ток весь уходит в землю) будет практически рано 0.

Вокруг площадки напряжение шага будет весьма значительным, поэтому для его рассеивания в земле, если рядом расположены узкие проходы или проезд транспорта, закапывают металлические шины. Эти шины не соединены с заземляющим устройством и между собой. В этом случае распределение потенциала по земле происходит равномерно, а напряжение шага значительно уменьшается.

Типы заземлителей

Заземлители разделяются на искусственные и естественные. Искусственные заземлители устанавливаются ручным способом и производятся из металлоконструкций. Естественные заземлители несут в себе производственные и строительные электропроводящие конструкции и коммуникации (железные трубы, арматура фундамента). Главное условие – их хороший контакт с землей. Нельзя использовать в качестве естественных заземлителей трубопроводы горючих газов или жидкостей (газо- и нефтепроводы). Для оптимальной защиты устройств применяют естественное заземление в первую очередь.

Искусственное заземление изготовляют из стали.

По себестоимости дешевле всего такое заземление можно изготовить из электродов, вертикально вкопанных в землю. Все электроды должны быть соединены между собой. Вертикальные электроды выполняют из стержней с диаметром 10 – 14 мм. и длиной не менее 5 метров. Так же можно применить уголки. Для горизонтальной связи применяют полосу из стали сечением 4 х 12мм., либо прутки с диаметром не менее 1см. Заземляющие проводники с заземлителями для минимального сопротивления должны быть соединены сваркой, а с заземляемым оборудованием также сваркой или с помощью болтового соединения.

На рисунке слева представлены:
а – вертикальный электрод в грунте,
б – сварное соединение заземлителей с заземляющими проводниками,
в – сварные соединения заземляющих проводников.

Как мы уже упоминали – чем ниже сопротивление заземления, тем меньший ток пройдет через человека, поэтому очень важен фактор минимизации сопротивления заземляющего устройства. Суммарное сопротивление заземления зависит от суммы всех сопротивлений при протекании тока от устройства к земле. Сопротивление заземления состоит из сопротивления материалов и сварных соединений.

Ниже мы приведем данные сопротивления заземления, при условии напряжения на заземляющем устройстве не более 10 кВ. Если напряжение на заземляющем устройстве превышает 5 кВ, то необходимо предусмотреть меры по защите и изоляции кабелей связи, проходящих по земле.>Применение заземления в быту

Разговор о применении заземления в бытовых помещениях возникает, когда
— есть необходимость прикасания человеком к металлоконструкциям здания и одновременно к металлизированному корпусу радиоэлектронного оборудования,
— наличие сырости в помещении, либо влажности более 75% (пример: обязательно заземление электропечи в бане или сауне),
— пол помещения выполнен из металла, либо любого другого токопроводящего материала.

Для осуществления заземления металлического оборудования, у которого есть опасность оказаться под напряжением достаточно применение медного неизолированного провода с сечением не менее 4 кв. см. от устройства к заземлителю, либо контурной заземляющей шине из стали или металла с низким сопротивлением. Физическое осуществление заземления происходит с помощью варки или болтового соединения в хорошо доступном и просматриваемом месте. Если применяется соединение болтом, то необходимо заранее предусмотреть защитные меры места соединения от коррозирования (регламентируется для помещений с повышенной влажностью). В случае применения защитного заземления или зануления в бытовых розетках в качестве третьего заземляющего контакта, прокладка заземляющего провода должна производиться укладкой в стене с последующим оштукатуриванием. При этом не допускаются перекрестия заземляющих проводов с питающей линией (все провода должны идти параллельно).

Нельзя осуществлять последовательное заземление металлических корпусов единой шиной от одной единицы к другой, так как есть опасность возникновения контурных токов. Так же не допускается использовать единое заземление на устройства, если они питаются от разных линий электропередач.

Применение заземления при работе с электроникой

Бытовое заземление в современных жилищах сегодня является неотъемлемой частью электрической разводки. Для защиты потребителей и безопасной их эксплуатации применяют розетки и переноски с дополнительным контактом заземляющей нейтрали, маркирующийся буквой N.

В целях защиты слаботочных радиоэлектронных цепей во время ремонта, сборки и наладки устройств следует применять специальные заземляющие браслеты. Со стороны заземлителя браслет с помощью захватного устройства крепится к заземляющей шине, другая сторона выполнена в виде гибкой ткани с наличием металлизированной контактной площадки. Контактная площадки должна плотно соприкасаться с кожным покровом человека. Как правило, браслет одевают на запястье. Заземляющий браслет так же называют антистатическим.

Помимо основных средств борьбы со статическим электричеством существуют и дополнительные меры: антистатическая одежда в виде халатов и обуви, специальные пакеты (их можно встретить при покупке компьютерных материнских плат или жестких дисков), специализированная мебель и т.д.

Ссылка на основную публикацию